题目内容
10.某射手射击所得环数ξ的分布列如下:ξ | 7 | 8 | 9 | 10 |
P | x | 0.1 | 0.3 | y |
A. | 0.8 | B. | 0.6 | C. | 0.4 | D. | 0.2 |
分析 根据分布列的概率之和是1,得到关于x和y之间的一个关系式,由变量的期望值,得到另一个关于x和y的关系式,联立方程,解出要求的y的值.
解答 解:由表格可知:x+0.1+0.3+y=1,
7x+8×0.1+9×0.3+10×y=8.9
解得y=0.4.
故选:C.
点评 本题是期望和分布列的简单应用,通过创设情境激发学生学习数学的情感,培养其严谨治学的态度.在学生分析问题、解决问题的过程中培养其积极探索的精神,属于基础题.
练习册系列答案
相关题目
1.不等式x2-5x-6>0的解集是( )
A. | (-6,1) | B. | (-1,6) | C. | (-∞,-1)∪(6,+∞) | D. | (-∞,-6)∪(1,+∞) |
15.某海滨浴场的海浪高度y (米)是时间t(0≤t≤24)(小时)的函数,记作y=f(t),表是某天各时的浪高数据:
(1)选用一个函数来近似描述这个海滨浴场的海浪高度y (米)与t时间(小时)的函数关系;
(2)依据规定,当海浪高度不少于1米时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的上午8时至晚上20时之间,有多少时间可供冲浪爱好者进行冲浪?
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(2)依据规定,当海浪高度不少于1米时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的上午8时至晚上20时之间,有多少时间可供冲浪爱好者进行冲浪?
2.已知数列{an}中,a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),则a1+a2+…+a2015=( )
A. | -$\sqrt{3}$ | B. | 0 | C. | $\sqrt{3}$ | D. | 1008$\sqrt{3}$ |
19.计算$\frac{5}{i-2}$(i为虚数单位)的值是( )
A. | i+2 | B. | i-2 | C. | -2-i | D. | 2-i |
20.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为( )
A. | 150° | B. | 120° | C. | 60° | D. | 75° |