题目内容

精英家教网如图,平行四边形ABCD的对角线交于点O,过点O的直线交AD于E,BC于F,交AB延长线于G,已知AB=a,BC=b,BG=c,则BF=
 
分析:根据两条直线平行,得到三角形相似,根据相似三角形对应边成比例,得到一系列比例式,根据三角形全等,得到边长相等,利用等量代换变化出要求的量,根据方程思想,得到结果.
解答:解:∵BF∥AE
BG
AG
=
BF
AE
=
BF
AD-BF
=
BF
BC-BF

c
a+c
=
BF
c-BF

BF=
bc
a+2c

故答案为:
bc
a+2c
点评:本题考查三角形相似对应边成比例,考查等量代换思想,考查方程思想的应用,是一个比较典型的题目,本题是平面几何中常见的类型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网