题目内容
【题目】已知椭圆的中心在坐标原点,长轴在x轴上,长轴长是短轴长的2倍,两焦点分别为和,椭圆上一点到和的距离之和为12.圆的圆心为.
(1)求的面积;
(2)若椭圆上所有点都在一个圆内,则称圆包围这个椭圆.问:是否存在实数k使得圆包围椭圆?请说明理由.
【答案】(1);(2)不存在,理由见详解
【解析】
(1)根据题意分析可得,的值,进而得到,再求出的坐标,即可得到答案;
(2)分与两种情况讨论,发现椭圆上总有点在圆外,进而可得结论.
(1)设椭圆方程为:,
椭圆上一点到和的距离之和为12,则有,即,
又长轴长是短轴长的2倍,即,则,
所以椭圆方程为:,
所以,,
又,圆心,
所以△的面积;
(2)当时,将椭圆顶点代入圆方程得:,
故椭圆顶点在圆外;
当时,将椭圆顶点代入圆方程得:,
故椭圆顶点在圆外;
所以,不论取何值,圆都不可能包围椭圆.
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
【题目】某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
| 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0 16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0 40 |
第4组 | [80,90) | ▓ | 0 08 |
第5组 | [90,100] | 2 | b |
合计 | ▓ | ▓ |
(1)求出的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率