题目内容
计算C+C
的值.
答案:

练习册系列答案
相关题目
下面关于卡方说法正确的是( )
A、K2在任何相互独立的问题中都可以用于检验有关还是无关 | ||
B、K2的值越大,两个事件的相关性就越大 | ||
C、K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关 | ||
D、K2的观测值的计算公式是K2=
|
甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
乙校:
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:k2=
甲校:
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
分组 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
甲校 | 乙校 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
P(k2≥k0) | 0.10 | 0.025 | 0.010 |
k0 | 2.706 | 5.024 | 6.635 |