题目内容

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上的任意两点,点M(
1
2
y0)
为线段AB的中点.
(1)求:y0的值.
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
),  (n≥2,且n∈N*)
,求:Sn
(3)在 (2)的条件下,已知an=
2
3
                     (n=1) 
1
(Sn+1)(Sn+1+1)
 (n≥2)
,记Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,求:λ的取值范围.
分析:(1)由M为线段AB的中点,得:x1+x2=1,由此能求出y0的值.
(2)由 (1)知:x1+x2=1,f(x1)+f(x2)=y1+y2=1,Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)
,由倒序相加法能够求出Sn
(3)当n≥2时,an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)
,所以Tn=a1+a2+a3+…+an=
2
3
+4(
1
3
-
1
n+2
)=
2n
n+2
,由Tn<λ(Sn+1+1)得λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4
,由此能求出λ的取值范围.
解答:解:(1)由M为线段AB的中点,易得:x1+x2=1,
y0=
1
2
(y1+y2)=
1
2
[f(x1)+f(x2)]=
1
2
[1+log2(
x1
1-x1
x2
1-x2
)]

=
1
2
(1+log2
x1x2
x1x2
)=
1
2
(1+0)=
1
2
…(4分)
(2)由 (1)知:x1+x2=1,
f(x1)+f(x2)=y1+y2=1,
Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)

Sn=f(
n-1
n
)+f(
n-2
n
)+…+f(
2
n
)+f(
1
n
)

2Sn=[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+…+[f(
n-1
n
)+f(
1
n
)]
=
n-1个
1+1+…+1
=n-1

Sn=
n-1
2
  (n≥2,n∈N*)
…(8分)
(3)当n≥2时,an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)

Tn=a1+a2+a3+…+an=
2
3
+4(
1
3
-
1
n+2
)=
2n
n+2

由Tn<λ(Sn+1+1),
得:λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4

n+
4
n
≥4

4
n+
4
n
+4
4
4+4
=
1
2

λ>
1
2

即λ的取值范围为(
1
2
,+∞)
…(12分)
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,容易出错,是高考的重点.解题时要认真审题,注意倒序相加法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网