题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=
+log2
图象上的任意两点,点M(
,y0)为线段AB的中点.
(1)求:y0的值.
(2)若Sn=f(
)+f(
)+…+f(
)+f(
), (n≥2,且n∈N*),求:Sn.
(3)在 (2)的条件下,已知an=
,记Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,求:λ的取值范围.
1 |
2 |
x |
1-x |
1 |
2 |
(1)求:y0的值.
(2)若Sn=f(
1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
(3)在 (2)的条件下,已知an=
|
分析:(1)由M为线段AB的中点,得:x1+x2=1,由此能求出y0的值.
(2)由 (1)知:x1+x2=1,f(x1)+f(x2)=y1+y2=1,Sn=f(
)+f(
)+…+f(
)+f(
),由倒序相加法能够求出Sn.
(3)当n≥2时,an=
=
=4(
-
),所以Tn=a1+a2+a3+…+an=
+4(
-
)=
,由Tn<λ(Sn+1+1)得λ>
=
=
,由此能求出λ的取值范围.
(2)由 (1)知:x1+x2=1,f(x1)+f(x2)=y1+y2=1,Sn=f(
1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
(3)当n≥2时,an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
2 |
3 |
1 |
3 |
1 |
n+2 |
2n |
n+2 |
4n |
(n+2)2 |
4n |
n2+4n+4 |
4 | ||
n+
|
解答:解:(1)由M为线段AB的中点,易得:x1+x2=1,
y0=
(y1+y2)=
[f(x1)+f(x2)]=
[1+log2(
•
)]
=
(1+log2
)=
(1+0)=
…(4分)
(2)由 (1)知:x1+x2=1,
f(x1)+f(x2)=y1+y2=1,
Sn=f(
)+f(
)+…+f(
)+f(
),
Sn=f(
)+f(
)+…+f(
)+f(
),
∴2Sn=[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]=
=n-1,
∴Sn=
(n≥2,n∈N*)…(8分)
(3)当n≥2时,an=
=
=4(
-
),
∴Tn=a1+a2+a3+…+an=
+4(
-
)=
,
由Tn<λ(Sn+1+1),
得:λ>
=
=
,
∵n+
≥4,
∴
≤
=
,
∴λ>
,
即λ的取值范围为(
,+∞)…(12分)
y0=
1 |
2 |
1 |
2 |
1 |
2 |
x1 |
1-x1 |
x2 |
1-x2 |
=
1 |
2 |
x1x2 |
x1x2 |
1 |
2 |
1 |
2 |
(2)由 (1)知:x1+x2=1,
f(x1)+f(x2)=y1+y2=1,
Sn=f(
1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
Sn=f(
n-1 |
n |
n-2 |
n |
2 |
n |
1 |
n |
∴2Sn=[f(
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
n-1个 | ||
|
∴Sn=
n-1 |
2 |
(3)当n≥2时,an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴Tn=a1+a2+a3+…+an=
2 |
3 |
1 |
3 |
1 |
n+2 |
2n |
n+2 |
由Tn<λ(Sn+1+1),
得:λ>
4n |
(n+2)2 |
4n |
n2+4n+4 |
4 | ||
n+
|
∵n+
4 |
n |
∴
4 | ||
n+
|
4 |
4+4 |
1 |
2 |
∴λ>
1 |
2 |
即λ的取值范围为(
1 |
2 |
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,容易出错,是高考的重点.解题时要认真审题,注意倒序相加法的灵活运用.

练习册系列答案
相关题目