题目内容
设函数f(x)=x+ax2+bln x,曲线y=f(x)在点P(1,0)处的切线斜率为2.(1)求a,b的值;(2)证明:f(x)≤2x-2.
(1) (2)见解析
解析
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值.(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围.
已知函数f(x)=aln x=(a为常数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;(2)求函数f(x)的单调区间;(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.
已知函数f(x)=x2+xsin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.
已知函数f(x)=ax3-x2+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若h(x)=x2-bx+-,解不等式f′(x)+h(x)<0.
已知函数在处存在极值.(1)求实数的值;(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;(3)当时,讨论关于的方程的实根个数.
已知函数f(x)=ex-kx2,x∈R.(1)若k=,求证:当x∈(0,+∞)时,f(x)>1;(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;(3)求证:<e4(n∈N*)..
已知函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求证:;(Ⅲ)设,对于任意时,总存在,使成立,求实数的取值范围.