题目内容
【题目】如图,圆台的轴截面为等腰梯形,圆台的侧面积为.若点分别为圆上的动点,且点在平面的同侧.
(1)求证:;
(2)若,则当三棱锥的体积取最大值时,求与平面所成角的正弦值.
【答案】(1)详见解析;(2).
【解析】
(1)根据圆台侧面积公式可以求出上下两底面的半径,根据线面垂直的性质、直角三角形的判断方法进行证明即可;
(2)根据三棱锥的体积公式,结合基本不等式确定点位置,建立空间直角坐标系,利用空间向量夹角公式进行求解即可.
(1)证明:设圆的半径分别为
因为圆台的侧面积为,
所以,可得
因此,在等腰梯形中,.
如图,连接线段,
在圆台中,平面平面,
所以.
又,
所以在中,.
在中,,
故,即.
(2)解:由题意可知,三棱锥的体积为
又在直角三角形中,
所以当且仅当,
即点为弧的中点时,有最大值
连接,因为平面,
所以以为坐标原点,
分别以的方向为轴建立如图所示的空间直角坐标系.
点,
由可知,
设平面的法向量
则,,
取,
则
所以与平面所成角的正弦值为
【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;
②根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程,
其中,.
76 | 83 | 812 | 526 |
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.现统计得到相关统计情况如下:
甲套设备的样本的频率分布直方图
乙套设备的样本的频数分布表
质量指标值 | ||||||
频数 | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根据上述所得统计数据,计算产品合格率,并对两套设备的优劣进行比较;
(2)填写下面列联表,并根据列联表判断是否有95%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中
【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重元(不足按算). (如:一个包裹重量为则需支付首付元,续重元,一共元快递费用)
(1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(如:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?
(2)为了解该快递点2019年的揽件情况,在2019年内随机抽查了天的日揽收包裹数(单位:件),得到如下表格:
包裹数(单位:件) | ||||
天数(天) |
现用这天的日揽收包裹数估计该快递点2019年的日揽收包裏数.若从2019年任取天,记这天中日揽收包裹数超过件的天数为随机变量求的分布列和期望