题目内容
16.过点P(4,2)作圆O:x2+y2=42的弦AB,设弦AB的中点为M,令M的坐标为(x,y),则x和y满足的关系式为(x-2)2+(y-1)2=5.分析 由题意,P在圆O内,弦AB的中点为M,可得OM⊥AB,M的轨迹是以OP为直径的圆,即可得出结论.
解答 解:由题意,P在圆O内,
∵弦AB的中点为M,
∴OM⊥AB,
∴M的轨迹是以OP为直径的圆,方程为(x-2)2+(y-1)2=5.
故答案为:(x-2)2+(y-1)2=5.
点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
7.用样本的频率分布来估计总体情况时,下列选项中正确的是( )
A. | 估计准确与否值与所分组数有关 | B. | 样本容量越大,估计结果越准确 | ||
C. | 估计准确与否值域总体容量有关 | D. | 估计准确与否与样本容量无关 |