题目内容

2.已知直线l1:4x-3y+12=0和直线l2:x=-1,则抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是$\frac{16}{5}$.

分析 如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.

解答 解:如图所示,
过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.
则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.
|FQ|=$\frac{|4×1-0+12|}{\sqrt{{4}^{2}+(-3)^{2}}}$=$\frac{16}{5}$.
故答案为:$\frac{16}{5}$.

点评 本题考查了抛物线的标准方程及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网