题目内容
命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=
的定义域是(-∞,-1]∪[3,+∞),则( )
|x-1|-2 |
A、“p或q”为假 |
B、“p且q”为真 |
C、p真q假 |
D、p假q真 |
分析:若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=
的定义域为x∈(-∞,-1]∪[3,+∞),q为真命题.
|x-1|-2 |
解答:解:∵|a+b|≤|a|+|b|,
若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.
又由函数y=
的定义域为|x-1|-2≥0,即|x-1|≥2,即x-1≥2或x-1≤-2.
故有x∈(-∞,-1]∪[3,+∞).
∴q为真命题.
故选D.
若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.
又由函数y=
|x-1|-2 |
故有x∈(-∞,-1]∪[3,+∞).
∴q为真命题.
故选D.
点评:本题考查复合命题的真假,解题时要注意公式的灵活运用,熟练掌握复合命题真假的判断方法.
练习册系列答案
相关题目
命题p:若a、b∈R,|a|+|b|>1 则|a+b|>1.
命题q:等轴双曲线
-
=1(a>0,b>0)中a=b.
则以上两个命题中( )
命题q:等轴双曲线
x2 |
a2 |
y2 |
b2 |
则以上两个命题中( )
A、“p或q”为假 |
B、“p且q”为真 |
C、p真q假 |
D、p假q真 |
命题p:若a、b∈R,则|a+b|<1是|a|+|b|<1的充分而不必要条件;命题q:函数y=
的定义域是(-∞,-3]∪[1,+∞).则( )
|x+1|-2 |
A、“p或q”为假命题 |
B、“p且q”为真命题 |
C、p为真命题,q为假命题 |
D、p为假命题,q为真命题 |