题目内容
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)设点,直线与曲线相交于两点,,求的值.
【答案】(1) 的普通方程为;曲线的直角坐标方程 (2)
【解析】
(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)将直线的参数方程代入曲线的直角坐标方程,可得,再利用一元二次方程根和系数的关系,利用直线参数方程t的几何意义求出结果.
解:(1)直线的普通方程为;
因为,
所以,
将,,代入上式,
可得.
(2)将直线的参数方程代入曲线的直角坐标方程,
可得,
设,两点所对应的参数分别为,,
则,.
于是.
练习册系列答案
相关题目