题目内容

给出下列命题:

①半径为2,圆心角的弧度数为的扇形面积为

②若为锐角,

③函数的一条对称轴是

是函数为偶函数的一个充分不必要条件.

其中真命题的序号是        .

 

【答案】

②③④

【解析】

试题分析:根据题意分别判定

①由扇形的面积公式可得S=×22=1,则半径为2,圆心角的弧度数为的扇形面积为1;故①错误

②由α、β为锐角,tan(α+β)=<1,tan β<1,可得0<α+β<,0<β<,∴0<α+2β<,则tan(α+2β)=tan[(α+β)+β]==1

∴α+2β=;故②正确③当x=时,函数y=cos(2x-)=cosπ=-1取得函数的最小值,根据函数对称轴处取得最值的性质可知,函数的一条对称轴是x=;③正确

④∅=时,函数y=sin(2x+ϕ)=-cos2x为偶函数,但是当y=sin(2x+ϕ)为偶函数时,kπ+π=∅,即∅=是函数y=sin(2x+ϕ)为偶函数时的一个充分不必要条件.④正确

故答案为:②③④

考点:本试题主要以命题的真假关系的判断为载体,主要考查了扇形的面积公式、两角和的正切公式、正弦函数与余弦函数的对称性质等知识的综合应用,此类试题综合性强,考查的知识点较多.

点评:解决该试题的关键对于三角函数性质的熟练运用。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网