题目内容
【题目】设函数f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.
【答案】解:(Ⅰ)a=2017时,f(x)=xln(x﹣1)﹣2017(x﹣2),
则f′(x)=ln(x﹣1)+ ﹣2017,故f′(2)=﹣2015,
又f(2)=0,
故切线方程是:y﹣0=﹣2015(x﹣2),
即2015x+y﹣4030=0;
(Ⅱ)由f(x)≥0得xln(x﹣1)﹣a(x﹣2)≥0,而x≥2,
故ln(x﹣1)﹣ ≥0,
设函数g(x)=ln(x﹣1)﹣ ,(x≥2),
于是问题转化为g(x)≥0对任意的x≥2恒成立,
注意到g(2)=0,故若g′(x)≥0,则g(x)递增,
从而g(x)≥g(2)=0,而g′(x)= ,
∴g′(x)≥0等价于x2﹣2a(x﹣1)≥0,
分离参数得a≤ = [(x﹣1)+ +2],
由均值不等式得 [(x﹣1)+ +2]≥2,
当且仅当x=2时取“=”成立,于是a≤2,
当a>2时,设h(x)=x2﹣2a(x﹣1),
∵h(2)=4﹣2a=2(2﹣a)>0,
又抛物线h(x)=x2﹣2a(x﹣1)开口向上,
故h(x)=x2﹣2a(x﹣1)有2个零点,
设两个零点为x1 , x2 , 则x1<2<x2 ,
于是x∈(2,x2)时,h(x)<0,故g′(x)<0,g(x)递减,
故g(x)<g(2)=0,与题设矛盾,不合题意,
综上,a的范围是(﹣∞,2].
【解析】(Ⅰ)求出函数的导数,计算f(2),f′(2),求出切线方程即可;(Ⅱ)设函数g(x)=ln(x﹣1)﹣ ,(x≥2),于是问题转化为g(x)≥0对任意的x≥2恒成立,根据函数的单调性求出a的范围即可.
【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(Ⅰ)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(Ⅱ)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
天数 | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/吨 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?