题目内容

(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.

(1)证明:AE⊥PD;

(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.

 

【答案】

 

(1)略

(2)

【解析】(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.

因为      E为BC的中点,所以AE⊥BC.

     又   BC∥AD,因此AE⊥AD.

因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

而    PA平面PAD,AD平面PAD 且PA∩AD=A,

所以  AE⊥平面PAD,又PD平面PAD.

所以 AE⊥PD………4分

(Ⅱ)解:设AB=2,H为PD上任意一点,连接AH,EH.

由(Ⅰ)知   AE⊥平面PAD,

则∠EHA为EH与平面PAD所成的角.

在Rt△EAH中,AE=

所以  当AH最短时,∠EHA最大,

即     当AH⊥PD时,∠EHA最大.

此时    tan∠EHA=

因此   AH=.又AD=2,所以∠ADH=45°,

所以    PA=2………6分

解法一:因为   PA⊥平面ABCD,PA平面PAC,

        所以   平面PAC⊥平面ABCD.

        过E作EO⊥AC于O,则EO⊥平面PAC,

        过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,

       在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,

       又F是PC的中点,在Rt△ASO中,SO=AO·sin45°=,

       又    

       在Rt△ESO中,cos∠ESO=

       即所求二面角的余弦值为……12分

解法二:由(Ⅰ)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E、F分别为BC、PC的中点,所以

E、F分别为BC、PC的中点,所以

A(0,0,0),B(,-1,0),C(C,1,0),

D(0,2,0),P(0,0,2),E(,0,0),F(),

所以    

设平面AEF的一法向量为

 


因此

 

 


因为  BD⊥AC,BD⊥PA,PA∩AC=A,

所以   BD⊥平面AFC,

故     为平面AFC的一法向量.

又     =(),

 

 

 


因为   二面角E-AF-C为锐角,

所以所求二面角的余弦值为……12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网