题目内容

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

【答案】(1)2;(2)

【解析】试题分析

1)由题意先求得函数具有性质于是可得当时, ,利用导数可判断上单调递增,故,根据条件得到.(2)由于“对任意的,总存在,使不等式恒成立”等价于“”,故可将问题转化为求函数的最大值或其值域.

试题解析:

(1)∵,即

时,

∴当时,

.

恒成立,

上单调递增,

,解得

∴实数的值为2.

(2)当时,

∴函数单调递增,

∴当时,

又当时,

①当时, ,函数在区间单调递增,

∵对任意的,总存在,使不等式恒成立,

解得

②当时, ,函数在区间单调递减,

同①可得

解得

综上

∴实数的取值范围

练习册系列答案
相关题目

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

型】解答
束】
19

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;

(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:

日均派送单数

52

54

56

58

60

频数(天)

20

30

20

20

10

回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.

(参考数据:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网