题目内容
【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.
(1)求实数的值;
(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.
【答案】(1)2;(2)或
【解析】试题分析:
(1)由题意先求得函数具有性质,于是可得当时, ,利用导数可判断在上单调递增,故,根据条件得到.(2)由于“对任意的,总存在,使不等式恒成立”等价于“”,故可将问题转化为求函数的最大值或其值域.
试题解析:
(1)∵,即,
∴,
∴,
当时, ,
∴当时, ,
∴.
又,
∴恒成立,
∴在上单调递增,
∴,
令,解得.
∴实数的值为2.
(2)当时, ,
∴,
∴函数在单调递增,
∴当时, .
又当时, ,
∴.
①当时, ,函数在区间单调递增,
∴.
∵对任意的,总存在,使不等式恒成立,
∴
解得;
②当时, ,函数在区间单调递减,
∴,
同①可得,
解得;
综上或.
∴实数的取值范围.
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
【答案】(1);(2)
【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得;
(2)利用等体积法可求点到平面的距离.
试题解析:((1)因为平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.
因为,
.
(2)因为 , ,
所以平面,
又因为平面,
所以平面平面,
平面平面,
在平面内过点作直线于点,则平面,
在和中,
因为,所以,
又由题知,
所以,
由已知求得,所以,
连接BD,则,
又求得的面积为,
所以由点B 到平面的距离为.
【题型】解答题
【结束】
19
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )