题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_ST/2.png)
(1)求点M的纵坐标;
(2)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_ST/3.png)
①求Sn;
②已知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_ST/4.png)
【答案】分析:(1)由题设条件知M是AB的中点,由中点坐标公式可以求出M点的给坐标.
(2)①
=
,即
以上两式相加后两边再同时除以2就得到Sn.②当n≥2时,根据题设条件,由Tn<λ(Sn+1+1)得
,∴
,再由均值不等式求出λ的取值范围.
解答:解:(1)依题意由
知M为线段AB的中点.
又∵M的横坐标为1,A(x1,y1),B(x2,y2)即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/6.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/7.png)
即M点的纵坐标为定值
.
(2)①由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/9.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/10.png)
两式想加得,2Sn=n-1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/11.png)
②当n≥2时,
=
=4(
)
又n=1时,a1=
也适合.
∴an=4(
-
)
∴
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/19.png)
由
恒成立![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/21.png)
而
(当且仅当n=2取等号)
∴
,∴λ的最小正整数为1.
点评:本题考查了数列与函数、函数的图象、不等式等综合内容,函数图象成中心对称的有关知识,考查相关方法,考查了数列中常用的思想方法,如倒序相加法,裂项相消法求数列前n项的和,利用函数与方程的思想,转化与化归思想解答热点问题--有关恒成立问题.
(2)①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/4.png)
解答:解:(1)依题意由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/5.png)
又∵M的横坐标为1,A(x1,y1),B(x2,y2)即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/7.png)
即M点的纵坐标为定值
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/8.png)
(2)①由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/10.png)
两式想加得,2Sn=n-1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/11.png)
②当n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/14.png)
又n=1时,a1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/15.png)
∴an=4(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/17.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/19.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/21.png)
而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/22.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224318610611125/SYS201311012243186106111021_DA/23.png)
点评:本题考查了数列与函数、函数的图象、不等式等综合内容,函数图象成中心对称的有关知识,考查相关方法,考查了数列中常用的思想方法,如倒序相加法,裂项相消法求数列前n项的和,利用函数与方程的思想,转化与化归思想解答热点问题--有关恒成立问题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目