题目内容
(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x1,x2,…,xa的样本方差,其中为样本平均数.
解析:(I)X可能的取值为0,1,2,3,4,且
即X的分布列为
X的数学期望是:X 0 1 2 3 4 P
.
(II)品种甲的每公顷产量的样本平均数和样本方差分别是:
,
.
品种乙的每公顷产量的样本平均数和样本方差分别是:
,
,
由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.
解析
练习册系列答案
相关题目