题目内容

(2013•内江二模)在实数集R中定义一种运算“⊕”,对任意a,b∈R,a⊕b为唯一确定的实数且具有性质:
(1)对任意a,b∈R,有a⊕b=b⊕a;
(2)对任意a∈R,有a⊕0=a;
(3)对任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函数f(x)=x2
1x2
,则下列命题中:
(1)函数f(x)的最小值为3;
(2)函数f(x)为奇函数;
(3)函数f(x)的单调递增区间为(-1,0)、(1,+∞).
其中正确例题的序号有
(1)(3)
(1)(3)
分析:对于新定义的运算问题常常通过赋值法得到一般性的结论,本题的关键是对f(x)的化简.
解答:解:在(3)中,令c=0,则a⊕b=ab+a+b,所以f(x)=x2
1
x2
=x2
1
x2
+x2+
1
x2
=1+x2+
1
x2

f(x)=1+x2+
1
x2
≥1+2
x2
1
x2
=3
,所以命题(1)正确;
f(-x)=1+(-x)2+
1
(-x)2
=1+x2+
1
x2
=f(x)
,则函数f(x)为偶函数,所以命题(2)不正确;
f(x)=2x-
2
x3
=
2(x2+1)(x+1)(x-1)
x3
,由此可知函数的增区间为(-1,0),(1,+∞),
所以命题(3)正确.
故答案为(1)(3).
点评:本题是一个新定义运算型问题,考查了函数的最值、奇偶性、单调性等有关性质以及同学们类比运算解决问题的能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网