题目内容

(2013•内江二模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线的方程;
(2)直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一圆上,求m的取值范围.
分析:(1)利用椭圆的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2
,建立方程,求得几何量,即可求得双曲线方程;
(2)直线方程与双曲线方程联立,利用C、D两点都在以A为圆心的同一圆上,可得|CA|=|DA|,结合韦达定理,即可求得m的取值范围.
解答:解:(1)由题意可得:e=
c
a
=
2
3
3
,则
a2+b2
a2
=
4
3

设直线方程为
x
a
-
y
b
=1
,原点到直线距离为
3
2
,则
ab
a2+b2
=
3
2
,即
a2b2
a2+b2
=
3
4
②,
由①②可得a=
3
,b=1,∴双曲线方程为
x2
3
-y2=1

(2)设C(x1,y1)、D(x2,y2),由
y=kx+m
x2
3
-y2=1

消去y整理可得(1-3k2)x2-6kmx-3m2-3=0
∵直线y=kx+m(k≠0,m≠0)与该双曲线交于不同的两点C、D,
∴△=(-6km)2-4(1-3k2)(-3m2-3)>0,即m2+1>3k2,③
∵C、D两点都在以A为圆心的同一圆上,
∴|CA|=|DA|
x12+(y1+1)2
=
x22+(y2+1)2

∵y1=kx1+m,y2=kx2+m
∴(1+k2)(x1+x2)+2k(m+1)=0
∵x1+x2=
6km
1-3k2

∴(1+k2)×
6km
1-3k2
+2k(m+1)=0
∴4m+1-3k2=0
∵m2+1>3k2>0
∴m2+1>4m+1>0
-
1
4
<m<0或m>4
点评:本题考查了利用双曲线的性质求解双曲线的方程,直线与双曲线的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网