题目内容
(2010•天津模拟)如果圆(x-a)2+(y-a)2=8上总存在两个点到原点的距离为
,则实数a的取值范围是( )
2 |
分析:圆(x-a)2+(y-a)2=8和圆x2+y2=2相交,两圆圆心距大于两圆半径之差、小于两圆半径之和.
解答:解:问题可转化为圆(x-a)2+(y-a)2=8和圆x2+y2=2相交,
两圆圆心距d=
=
|a|,
由R-r<|OO1|<R+r得2
-
<
|a|<2
+
,
解得:1<|a|<3,即a∈(-3,-1)∪(1,3)
故选A.
两圆圆心距d=
(a-0)2+(a-0)2 |
2 |
由R-r<|OO1|<R+r得2
2 |
2 |
2 |
2 |
2 |
解得:1<|a|<3,即a∈(-3,-1)∪(1,3)
故选A.
点评:体现了转化的数学思想,将问题转化为:圆(x-a)2+(y-a)2=8和圆x2+y2=2相交.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目