题目内容
12.在平面直角坐标系中,$\overrightarrow{i}$,$\overrightarrow{j}$分别是与x,y轴正方向同向的单位向量,平面内三点A,B,C满足,$\overrightarrow{AB}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{AC}$=3$\overrightarrow{i}$+m$\overrightarrow{j}$.若A,B,C三点构成以∠B为直角的直角三角形,则实数m的值为1.分析 写出两个向量的坐标,利用向量的运算法则求出的坐标,利用向量垂直的充要条件列出方程求出m的值.
解答 解:∵$\overrightarrow{AB}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{AC}$=3$\overrightarrow{i}$+m$\overrightarrow{j}$,
∴$\overrightarrow{AB}$=(1,2),$\overrightarrow{AC}$=(3,m),
∴$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=(2,m-2),
∵A,B,C三点构成以∠B为直角的直角三角形,
∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,
∴2+2(m-2)=0,
解得:m=1,
故答案为:1.
点评 本题考查向量坐标的定义、考查向量的运算法则、考查向量垂直的充要条件.
练习册系列答案
相关题目
2.若1<a<4,1<b<2,则$\frac{a}{b}$的取值范围为( )
A. | (1,2) | B. | ($\frac{1}{2}$,2) | C. | (2,4) | D. | ($\frac{1}{2}$,4) |
3.函数f(x)=log2(x2+2),$x∈[{-\sqrt{2},\;\sqrt{6}}]$的值域为( )
A. | [2,3] | B. | [1,3] | C. | [4,8] | D. | [2,8] |
7.已知函数f(x)=sin(2x+$\frac{π}{6}$),则要得到函数f(x)的图象只需将函数g(x)=sin2x的图象( )
A. | 向左平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
C. | 向左平移$\frac{π}{12}$个单位长度 | D. | 向右平移$\frac{π}{12}$个单位长度 |
17.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,3$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直,则$\overrightarrow{a}$,$\overrightarrow{b}$夹角为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}$π | D. | $\frac{5}{6}$π |
1.函数 f(x)=ax3+$\frac{1}{2}$x2的导函数为 f′(x),且 f(x) 在 x=-1 处取得极大值,设g(x)=$\frac{1}{f′(x)}$,执行如图所示的程序框图,若输出的结果大于$\frac{2014}{2015}$,则判断框内可填入的条件是( )
A. | n≤2014 | B. | n≤2015 | C. | n>2014 | D. | n>2015 |
2.已知x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ 2x-y-1≤0\end{array}$,当目标函数z=$\sqrt{3}$ax+by({a>0,b>0})在该约束条件下取得最大值4时,a2+b2的最小值为( )
A. | 8 | B. | 4 | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | 2 |