题目内容

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间.
分析:(1)把x=2代入7x-4y-12=0,解得y=
1
2
,即f(2)=
1
2
.由于曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,可得
f(2)=a+
b
4
=
7
4
f(2)=2a-
b
2
=
1
2
.解得即可;
(2)由(1)可得:f(x)=1+
3
x2
>0,即可得出单调性.
解答:解:(1)把x=2代入7x-4y-12=0,得7×2-4y-12=0,解得y=
1
2
,∴f(2)=
1
2

f(x)=a+
b
x2
,∵曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,
f(2)=a+
b
4
=
7
4
f(2)=2a-
b
2
=
1
2
.解得
a=1
b=3

∴f(x)=x-
3
x

(2)由(1)可得:f(x)=1+
3
x2
>0,
∴函数f(x)在(-∞,0),(0,+∞)上单调递增.
点评:本题考查了利用导数研究函数的单调性、导数的几何意义、切线方程等基础知识与基本方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网