题目内容

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,
(1)求y=f(x)的解析式,并求其单调区间;
(2)用阴影标出曲线y=f(x)与此切线以及x轴所围成的图形,并求此图形的面积.
分析:(1)求导函数,利用切线方程,建立方程组,即可求y=f(x)的解析式,从而可得单调区间;
(2)作出函数图象,可得曲线y=f(x)与此切线以及x轴所围成的图形,利用定积分,可求面积.
解答:解:(1)求导函数,可得f′(x)=a+
b
x2

∵曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,
f′(2)=
7
4
,f(2)=
1
2

a+
b
4
=
7
4
2a-
b
2
=
1
2
,∴a=1,b=3
f(x)=x-
3
x
f′(x)=1+
3
x2

∴函数的单调增区间为(-∞,0),(0,+∞);
(2)曲线y=f(x)与此切线以及x轴所围成的图形,如图所示

由7x-4y-12=0,可得y=
7
4
x-3
,令y=0,可得x=
12
7

∴阴影部分的面积为
2
12
7
[(
7
4
x-3)-(x-
3
x
)]
=(
3
8
x2-3x+3lnx
|
2
12
7
=-
315
686
+3ln
7
6
点评:本题考查导数知识的运用,考查导数的几何意义,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网