题目内容
若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.
y2=-4x,M(-9,6)或M(-9,-6)
解析
(本小题满分12分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (Ⅰ)求椭圆M的标准方程;(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。(1)求抛物线D的方程;(2)已知动直线l过点P(4,0),交抛物线D于A,B两点(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。
已知直线l: y="x-2" 与抛物线y2=2x相交于两点A、B,(1)求证:OA⊥OB(2)求线段AB的长度
(本小题12分)已知椭圆,斜率为的直线交椭圆于两点,且点在直线的上方,(1)求直线与轴交点的横坐标的取值范围;(2)证明:的内切圆的圆心在一条直线上.
已知圆O:,点O为坐标原点,一条直线:与圆O相切并与椭圆交于不同的两点A、B(1)设,求的表达式; (2)若,求直线的方程;(3)若,求三角形OAB面积的取值范围.
已知椭圆的长轴长为2a,焦点是F1(-,0)、F2(,0),点F1到直线x=-的距离为,过点F2且倾斜角为锐角的直线l与椭圆交于A、B两点,使得|F2B|=3|F2A|.(1)求椭圆的方程;(2)求直线l的方程.
若抛物线的顶点在原点,其准线方程过双曲线-=1(,)的一个焦点,如果抛物线与双曲线交于(,),(,-),求两曲线的标准方程.
已知椭圆C:.(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;