题目内容

假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
b=
n
ii=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
若由资料知,y对x呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?,
a
=
.
y
-b
.
x
分析:(1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数b,在根据样本中心点一定在线性回归方程上,求出a的值,从而得到回归直线方程;
(2)根据第一问做出的线性回归方程,当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.
解答:解:(1)由题意知
.
x
=
2+3+4+5+6
5
=4,
.
y
=
2.2+3.8+5.5+6.5+7.0
6
=5
b=
2×2.2+3×3.8+4×5.5+5×6.5+6×7-5×4×5
4+9+16+25+36-5×16
=1.23,
a=5-4×1.23=0.08,
故线性回归方程是
y
=1.23x+0.08.
(2)根据第一问知线性回归方程是
y
=1.23x+0.08
当自变量x=10时,预报维修费用是y=1.23×10+0.08=12.38
点评:本题考查线性回归方程,考查最小二乘法,考查预报值的求法,是一个新课标中出现的新知识点,已经在广东的高考卷中出现过类似的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网