题目内容
【题目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函数f(x)= ﹣1.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在锐角△ABC中,内角A、B、C的对边分别为a,b,c,tanB= ,对任意满足条件的A,求f(A)的取值范围.
【答案】解:(Ⅰ)向量 =(2cosx,sinx), =(cosx,2 cosx),
函数f(x)= ﹣1.
则f(x)=2cos2x+2 sinxcosx﹣1= sin2x+cos2x=2sin(2x )
由 ,
解得: ≤x≤ ,(k∈Z).
故得函数f(x)的单调递减区间为[ , ],(k∈Z)
(Ⅱ)由tanB= ,即: ,
∵cosB=
∴sinB= .
又∵△ABC是锐角,
∴B= .
则 <A<
由(Ⅰ)可知f(A)=2sin(2A )
那么:2A ∈( , )
则sin(2A )∈( ,1)
故得f(A)的取值范围是(﹣1,2)
【解析】(Ⅰ)根据函数f(x)= ﹣1.利用向量的数量积的运算求解f(x),结合三角函数的性质求解单调性即可.(Ⅱ)tanB= 求解.
练习册系列答案
相关题目