题目内容
已知两向量与满足,且,则与的夹角为 .
古希腊毕达哥拉斯学派的数学家在沙滩上用小石子排成多边形,从而研究“多边形数”.如图甲的三角形数1,3,6,10,15,…,第个三角形数为.又如图乙的四边形数1,4,9,16,25,…,第个四边形数为.以此类推,图丙的五边形数中,第个五边形数为 .
(1)三角形数:
(2)四边形数:
(3)五边形数:
经测算,某型号汽车在匀速行驶过程中每小时耗油量 (升)与速度 (千米/每小时) 的关系可近似表示为:.
(Ⅰ)该型号汽车速度为多少时,可使得每小时耗油量最低?
(Ⅱ)已知两地相距120公里,假定该型号汽车匀速从地驶向地,则汽车速度为多少时总耗油量最少?
若复数满足,则在复平面内表示复数的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(Ⅰ)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;
(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到“极满意”的人数,求的分布列及数学期望.
若曲线的一条切线为,其中为正实数,则的取值范围是( )
A. B.
C. D.
已知命题若,则,则下列叙述正确的是( )
A.命题的逆命题是:若,则
B.命题的否命题是:若,则
C.命题的否命题是:若,则
D.命题的逆否命题是真命题
已知函数,若实数是方程的解,且,则( )
A.恒为负值 B.等于0
C.恒为正值 D.不大于0