题目内容

已知-
π
2
<x<0
sinx+cosx=
1
5
,则
sinx-cosx
sinx+cosx
等于(  )
A、-7
B、-
7
5
C、7
D、
7
5
分析:将已知等式两边平方,利用完全平方公式展开,求出2sinxcosx的值,进而确定出sinx-cosx的值,代入原式计算即可求出值.
解答:解:∵-
π
2
<x<0,sinx+cosx=
1
5

∴(sinx+cosx)2=1+2sinxcosx=
1
25
,即-2sinxcosx=
24
25
,且sinx-cosx<0,
∴(sinx-cosx)2=1-2sinxcosx=
49
25
,即sinx-cosx=-
7
5

则原式=
-
7
5
1
5
=-7.
故选:A.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网