题目内容
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定( )A.有最小值 B.有最大值 C.是减函数 D.是增函数
解析:函数f(x)=x2-2ax+a的对称轴是直线x=a,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a位于区间(-∞,1)内,即a<1.g(x)==x+-2a,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x1<x2,则g(x1)-g(x2)=(x1+-2a)-(x2+-2a)=(x1-x2)+
()=(x1-x2)(1-)=(x1-x2).
∵1<x1<x2,
∴x1-x2<0,x1x2>1>0.
又∵a<1,∴x1x2>a.
∴x1x2-a>0.
∴g(x1)-g(x2)<0.∴g(x1)<g(x2).
∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值,故选D.
答案:D
练习册系列答案
相关题目
已知函数f(x)=
若f(2-a2)>f(a),则实数a的取值范围是( )
|
A、(-∞,-1)∪(2,+∞) |
B、(-1,2) |
C、(-2,1) |
D、(-∞,-2)∪(1,+∞) |