题目内容

已知函数f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),则实数a的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)
分析:由题义知分段函数求值应分段处理,利用函数的单调性求解不等式.
解答:解:f(x)=
x2+4x=(x+2)2-4,x≥0
4x-x2=-(x-2)2+4,x<0

由f(x)的解析式可知,f(x)在(-∞,+∞)上是单调递增函数,在由f(2-a2)>f(a),得2-a2>a
 即a2+a-2<0,解得-2<a<1.
故选C
点评:此题重点考查了分段函数的求值,还考查了利用函数的单调性求解不等式,同时一元二次不等式求解也要过关.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网