题目内容
设函数f(x)=ln x-ax,g(x)=ex-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.
(e,+∞)
解析
为圆周率,为自然对数的底数.(1)求函数的单调区间;(2)求,,,,,这6个数中的最大数与最小数;(3)将,,,,,这6个数按从小到大的顺序排列,并证明你的结论.
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.
已知函数.(1)当时,求函数的极值;(2)若对,有成立,求实数的取值范围.
已知函数.(1)当a=1时,求曲线在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的值;(3)若对任意,且恒成立,求a的取值范围.
设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.
(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.