题目内容

化简
cos(-θ)
cos(360°-θ)•tan2(180°-θ)
-
cos(90°+θ)
cos2(270°+θ)•sin(-θ)
=
 
分析:利用诱导公式可得要求的式子即
cosθ
cosθ•
sin2θ
cos2θ
-
-sinθ
-sin3θ
=
cos2θ
sin2θ
-
sinθ
sin3θ
,再利用同角三角函数的基本关系求出结果.
解答:解:
cos(-θ)
cos(360°-θ)•tan2(180°-θ)
-
cos(90°+θ)
cos2(270°+θ)•sin(-θ)
=
cosθ
cosθ•
sin2θ
cos2θ
-
-sinθ
-sin3θ
=
cos2θ
sin2θ
-
sinθ
sin3θ
=-1,
故答案为-1.
点评:本题考查利用诱导公式进行化简求值,要特别注意公式中符号的选取,这是解题的易错点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网