题目内容

已知椭圆具有性质:若A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0且a,b为常数)上关于原点对称的两点,点P是椭圆上的任意一点,若直线PA和PB的斜率都存在,并分别记为kPA,kPB,那么kPA与kPB之积是与点P位置无关的定值-
b2
a2
.试对双曲线
x2
a2
-
y2
b2
=1(a>0,b>0且a,b为常数)写出类似的性质,并加以证明.
分析:由椭圆到双曲线进行类比,不难写出关于双曲线的结论:kPA•kPB=
b2
a2
,其中点A、B是双曲线上关于原点对称
的两点,P是双曲线上的任意一点.然后设出点P、A、B的坐标,代入双曲线方程并作差,变形整理即可得到kPAkPB=
b2
a2
是与点P位置无关的定值.
解答:解:双曲线类似的性质为:
若A,B是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0
且a,b为常数)上关于原点对称的两点,点P是双曲线上的任意一点,若直线PA和PB的斜率都存在,并分别记为kPA,kPB,那么kPA与kPB之积是与点P位置无关的定值
b2
a2

证明:设P(x0,y0),A(x1,y1),则B(-x1,-y1),
x
2
0
a2
-
y
2
0
b2
=1
①,
x
2
1
a2
-
y
2
1
b2
=1
②,
两式相减得:b2(
x
2
0
-
x
2
1
)-a2(
y
2
0
-
y
2
1
)=0

kPAkPB=
y0-y1
x0-x1
y0+y1
x0+x1
=
y
2
0
-
y
2
1
x
2
0
-
x
2
1
=
b2
a2

kPAkPB=
b2
a2
,是与点P位置无关的定值.
点评:本题给出椭圆上的点满足的性质,求一个关于双曲线的类似性质并加以证明.着重考查了椭圆、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网