题目内容

已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,P是椭圆上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值.类比椭圆,写出双曲线C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的类似性质,并加以证明.
分析:类比椭圆的性质可得:若M、N是双曲线C′上关于原点对称的两个点,P是双曲线上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值
b2
a2
.设P(m,n)是双曲线C′上的任意一点,M(x0,y0),N(-x0,-y0)是双曲线上的关于原点对称的两个点.利用
m2
a2
-
n2
b2
=1
x
2
0
a2
-
y
2
0
b2
=1
,及斜率计算公式即可证明.
解答:解:若M、N是双曲线C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
上关于原点对称的两个点,P是双曲线上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值
b2
a2
.证明如下:
设P(m,n)是双曲线C′上的任意一点,M(x0,y0),N(-x0,-y0)是双曲线上的关于原点对称的两个点.
m2
a2
-
n2
b2
=1
x
2
0
a2
-
y
2
0
b2
=1

n2-
y
2
0
=b2(
m2
a2
-1)-b2(
x
2
0
a2
-1)
=
b2
a2
(m2-
x
2
0
)

∴kPM•kPN=
n-y0
m-x0
n+y0
m+x0
=
n2-
y
2
0
m2-
x
2
0
=
b2
a2
为定值.
点评:本题考查了双曲线的标准方程及其性质、斜率计算公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网