题目内容
【题目】已知椭圆的焦点坐标为,且短轴一顶点满足.
(1)求椭圆的方程;
(2)过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
【答案】(1);(2)当直线,内切圆面积的最大值为
【解析】
试题分析:(1)设椭圆方程,由焦点坐标可得,由
可得,又,由此可求椭圆方程;
(2)设,不妨,设的内切圆的半径为,则的周长为8,,因此最大,就最大.设直线的方程为,与椭圆方程联立,从而可表示的面积,利用换元法,借助于导数,即可求得结论
试题解析:(1)由题,设椭圆方程,不妨设,则,∴,故椭圆方程为.
(2)设,不妨设,设的内切圆半径为,则的周长为8,面积,因此最大,就最大,由题知,直线的斜率不为零,可设直线的方程为,由得,则,
令,则,则,令,则,当时,,在上单调递增,故有,即当时,,,这时所求内切圆面积的最大值为.
故直线,内切圆面积的最大值为.
练习册系列答案
相关题目
【题目】若学生一天学习数学超过两个小时的概率为(每天是相互独立没有影响的),一周内至少有四天每天学习数学超过两个小时,就说该生本周数学学习是投入的.
(Ⅰ)①设学生本周一天学习数学超过两个小时的天数为求的分布列与数学期望
②求学生本周数学学习投入的概率.
(Ⅱ)为了研究学生学习数学的投入程度和本周数学周练成绩的关系,随机在年级中抽取了名学生进行调查,所得数据如下表所示:
成绩理想 | 成绩不太理想 | 合计 | |
数学学习投入 | 20 | 10 | 30 |
数学学习不太投入 | 10 | 15 | 25 |
合计 | 30 | 25 | 55 |
根据上述数据能否有的把握认为“学生学习数学的投入程度和本周数学成绩两事件有关”?
附:
10.828 |