题目内容
【题目】已知数列的前项和为.数列满足,.
(1)若,且,求正整数的值;
(2)若数列,均是等差数列,求的取值范围;
(3)若数列是等比数列,公比为,且,是否存在正整数,使,,成等差数列,若存在,求出一个的值,若不存在,请说明理由.
【答案】(1)2;(2);(3)存在,k=1.
【解析】
(1)在原式中令n=m,代入,即可解出m;(2)设出数列,的首项和公差,代入原式化简得一个含n的恒等式,所以对应系数相等得到;(3)当时,,,为,,成等差数列.
解:(1)因为,且
所以
解得
(2)记数列,首项为,公差为;数列,首项为,公差为
则,
化简得:
所以
所以的取值范围
(3)当时,,,为,,成等差数列.
下面论证当时,,,不成等差数列
因为,所以
所以,所以
所以
若,,成等差数列,则
所以,所以,解得
当时,,,为,,
因为
所以
所以当时,,,不成等差数列
综上所述:存在且仅存在正整数时,,,成等差数列
练习册系列答案
相关题目
【题目】(1)某校夏令营有3名男同学A、B、C和3名女同学X、Y、Z,其年级情况如下表:
一年级 | 二年级 | 三年级 | |
男同学 | A | B | C |
女同学 | X | Y | Z |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
①用表中字母列举出所有可能的结果;
②设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
(2)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是多少?