题目内容

(2012•芜湖三模)设两个复数集N={z|z=2cosθ+i(λ+3sinθ),θ∈R},M={z|z=t+i(4-t2),t∈R}的交集为非空集合,则实数λ的取值范围是(  )
分析:由题设得
2cosθ=t
λ+3sinθ=4-t2
有解,所以λ=4-3sinθ-4cos2θ=4(sinθ-
3
8
2-
9
16
,由此能求出实数λ的取值范围.
解答:解:∵N={z|z=2cosθ+i(λ+3sinθ),θ∈R},
M={z|z=t+i(4-t2),t∈R}的交集为非空集合,
2cosθ=t
λ+3sinθ=4-t2
有解,
∴λ=4-3sinθ-4cos2θ
=-3sinθ+4sin2θ
=4(sin2θ-
3
4
sinθ)
=4(sinθ-
3
8
2-
9
16

∴当sinθ=
3
8
时,λ取最小值-
9
16

当sinθ=-1时,λ取最大值7,
故选D.
点评:本题考查方程思想、函数思想、分离参数的思想方法.考查分析、解决、逻辑思维、计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网