题目内容
(本小题满分12分)
如图,已知四棱锥P—ABCD的底面是直角梯形,,AB=BC=PB=PC=2CD=2,侧面
底面ABCD,O是BC中点,AO交BD于E.
(1)求证:;
(2)求二面角
的大小;
(3)求证:平面平面PAB.
…
解析:
方法一:(I)证明:,又
平面
平面ABCD,平面
平面ABCD=BC,
平面ABCD ……2分
在梯形ABCD中,可得
,即
在平面ABCD内的射影为AO,
……4分
(II)解:,且平面
平面ABCD
平面PBC,
平面PBC,
为二面角P—DC—B的平面角 ……6分
是等边三角形
即二面角P—DC—B的大小为
…8分
(III)证明:取PB的中点N,连结CN, ①
,且平面
平面ABCD,
平面PBC ……10分
平面PAB
平面
平面PAB ②
由①、②知平面PAB…………..10分
连结DM、MN,则由MN//AB//CD,,
得四边形MNCD为平行四边形,,
平面PAB.
平面PAD
平面
平面PAB ……………….12分
方法二:取BC的中点O,因为是等边三角形,
由侧面底面ABCD 得
底面ABCD ……1分
以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立如图所示的空间直角坐标系O—xyz……2分
(I)证明:,则在直角梯形中,
在等边三角形PBC中,……3分
,即
…4分
(II)解:取PC中点N,则
平面PDC,显然
,且
平面ABCD
所夹角等于所求二面角的平面角 ……6分
,
二面角
的大小为
……8分
(III)证明:取PA的中点M,连结DM,则M的坐标为
又 ……10分
,
即
平面PAB,
平面
平面PAB ……12分
![](http://thumb.zyjl.cn/images/loading.gif)