题目内容
11.二项式${(\root{3}{x}-\frac{3}{x})^n}$的展开式中含有x2项,则n最小时,展开式中所有系数之和为64.分析 求出展开式的通项公式,求出n的最小值,令x=1,即可求出所有系数之和.
解答 解:展开式的通项公式为${T}_{k+1}={C}_{n}^{k}(\root{3}{x})^{n-k}•(-\frac{3}{x})^{k}$=(-3)k${C}_{n}^{k}$${x}^{\frac{n-4k}{3}}$,
∵展开式中含有x2项,
∴$\frac{n-4k}{3}$=2有解,即n=6+4k,(k=0,1,2…,n),
故当k=0时,n=6为最小,
令x=1,则展开式的所有系数之和为(1-3)6=26=64,
故答案为:64.
点评 本题主要考查二项式定理的应用,根据展开式求出n的最小值是解决本题的关键.
练习册系列答案
相关题目
5.角θ的终边过点P(-1,2),则sinθ=( )
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | -$\frac{\sqrt{5}}{5}$ | D. | -$\frac{2\sqrt{5}}{5}$ |
6.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2a3h1h2,其中h0=a0⊕a1,h1=h0⊕a2,h2=h1⊕h0,⊕为运算规则为:0⊕0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为011111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )
A. | 110101 | B. | 000111 | C. | 101110 | D. | 011000 |
20.等边三角形ABC的边长为1,$\overrightarrow{BC}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AB}=\overrightarrow c$,那么$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow{c•}\overrightarrow a$等于( )
A. | $\frac{1}{2}$ | B. | 3 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
1.在研究高血压与患心脏病的关系调查中,调查高血压患者30人,其中有20人患心脏病,调查不患高血压的80人中,有30人患心脏病.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断高血压与患心脏病之间在多大程度上有关系?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)判断高血压与患心脏病之间在多大程度上有关系?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |