题目内容

已知函数f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)当b=-3,c=3时,求f(x)的极值;
(2)若f(x)在(-∞,x1),(x2,+∞)上递增,在(x1,x2)上递减,x2-x1>1,求证:b2>2(b+2c);
(3)在(2)的条件下,若t<x1,试比较t2+bt+c与x1的大小.
f′(x)=x2+(b-1)x+c
(1)b=-3,c=3时,f′(x)=x2-4x+3=(x-1)(x-3)
根据导数的知识可得,y极大=f(1)=
4
3
y极小=f(3)=0

(2)f'(x)=x2+(b-1)x+c
由题意可得x1,x2为x2+(b-1)x+c=0的两根,而|x1-x2|=x2-x1=
(b-1)2-4c
>1
从而可证
(3)由于x2+(b-1)x+c=(x-x1)(x-x2),则可得t2+bt+c=(t-x1)(t-x2)+t,t2+bt+c-x1=(t-x1)(t-x2)+t-x1=(t-x1)(t-x2+1),结合已知可证(t-x1)(t-x2+1)>0,即证
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网