题目内容
【题目】若两直线的倾斜角分别为 与,则下列四个命题中正确的是( )
A. 若<,则两直线的斜率:k1 < k2 B. 若=,则两直线的斜率:k1= k2
C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=
【答案】D
【解析】
由题意,两直线的倾斜角分别为 与,斜率分别是,表示出斜率和角之间的关系,根据正切在之间的定义域和单调性的关系,即可作出判定,得到答案.
由题意,两直线的倾斜角分别为 与,斜率分别是,
所以,且,
根据正切在之间的定义域和单调性的关系,
可得,对于A中,当,此时,所以不正确;
对于B中,当,此时斜率不存在,所以不正确;
对于C中,当,此时,所以不正确;
对于D中,当,此时,所以是正确的,故选D.
【题目】某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”. 参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:
等级 | 优秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?
优秀 | 男生 | 女生 | 总计 |
非优秀 | |||
总计 |
(2)以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人. ①求所选3人中恰有2人综合素质评价为“优秀”的概率;
②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.