题目内容
6.如图,已知AB为⊙O的直径,C,F为⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.求证:DE2=DA•DB.分析 欲证DE2=DB•DA,由于由切割线定理得DF2=DB•DA,故只须证:DF=DE,也就是要证:∠CFD=∠DEF,这个等式利用垂直关系通过互余角的转换即得.
解答 证明:连接OF.
因为DF切⊙O于F,所以∠OFD=90°.
所以∠OFC+∠CFD=90°.
因为OC=OF,所以∠OCF=∠OFC.
因为CO⊥AB于O,所以∠OCF+∠CEO=90°.(5分)
所以∠CFD=∠CEO=∠DEF,所以DF=DE.
因为DF是⊙O的切线,所以DF2=DB•DA.
所以DE2=DB•DA.(10分)
点评 本题考查的与圆有关的比例线段、切线的性质、切割线定理的运用.属于基础题
练习册系列答案
相关题目
11.根据以下样本数据
得到回归方程$\widehat{y}$=bx+a,则下列说法正确的是( )
x | 0 | 1 | 2 | 3 |
y | 7 | 5 | 3 | 2 |
A. | y与x正相关 | B. | 回归直线必过点(2,3) | ||
C. | a<0,b>0 | D. | a>0,b<0 |