题目内容

精英家教网如图,设点P、Q是线段AB的三等分点,若
OA
=a,
OB
=b,则
OP
=(  )用a、b表示.
A、-
2
3
a
+
1
3
b
B、
1
3
b
+
2
3
a
C、
1
2
a
+
1
3
b
D、
1
3
a
-
2
3
b
分析:由已知
OA
=a,
OB
=b,及向量加法的三角形法可得
OP
=
OA
+
AP
=
OA
+
1
3
AB
=
OA
+
1
3
(
OB
-
OA
)
=
1
3
OB
+
2
3
OA
,把已知代入可求.
解答:解:∵
OA
=a,
OB
=b,
由向量加法的三角形法则可得
OP
=
OA
+
AP
=
OA
+
1
3
AB

=
OA
+
1
3
(
OB
-
OA
)

=
1
3
OB
+
2
3
OA

=
1
3
b
+
2
3
a

故选B.
点评:本题主要注意灵活应用向量加法,减法的三角形法则及向量共线定理,灵活利用向量的知识是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网