题目内容
【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,可知其概率平分别为.
(1)求1张奖券中奖的概率;
(2)求1张奖券不中特等奖且不中一等奖的概率.
【答案】(1)(2)
【解析】
(1)1张奖券中奖包括中特等奖、一等奖、二等奖,且、、两两互斥,利用互斥事件的概率加法公式求解即可;
(2)“1张奖券不中特等奖且不中一等奖”的对立事件为“1张奖券中特等奖或中一等奖”,则利用互斥事件的概率公式求解即可
(1)1张奖券中奖包括中特等奖、一等奖、二等奖,
设“1张奖券中奖”为事件,则,
因为、、两两互斥,所以
故1张奖券中奖的概率为
(2)设“1张奖券不中特等奖且不中一等奖”为事件,则事件与“1张奖券中特等奖或中一等奖”为对立事件,
所以,
故1张奖券不中特等奖且不中一等奖的概率为
【题目】某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.
表1,设备改造后样本的频数分布表:
质量指标值 | ||||||
频数 | 2 | 18 | 48 | 14 | 16 | 2 |
(1)请估计该企业在设备改造前的产品质量指标的平均数;
(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X得分布列和数学期望.