ÌâÄ¿ÄÚÈÝ

 ÒÑÖªº¯Êý¡£

£¨I£©Çóº¯ÊýµÄ¼«Öµ£»

    £¨II£©¶ÔÓÚÇúÏßÉϵIJ»Í¬Á½µãP1£¨x1,y1£©£¬P2£¨x2,y2£©£¬Èç¹û´æÔÚÇúÏßÉϵĵãQ£¨x0,y0£©£¬    ÇÒx1<x0<x2£¬Ê¹µÃÇúÏßÔÚµãQ´¦µÄÇÐÏß//P1P2,£¬Ôò³ÆΪÏÒP1P2,µÄ°éËæÇÐÏß¡£

ÌرðµØ£¬µ±x0 = x1 + (1-)x2 (0<<1)ʱ£¬ÓÖ³ÆΪÏÒP1P2,µÄ-°éËæÇÐÏß¡£

£¨i£©ÇóÖ¤£ºÇúÏßy=f(x)µÄÈÎÒâÒ»ÌõÏÒ¾ùÓаéËæÇÐÏߣ¬²¢ÇÒ°éËæÇÐÏßÊÇΨһµÄ£»

£¨ii£©ÊÇ·ñ´æÔÚÇúÏßC£¬Ê¹µÃÇúÏßCµÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏߣ¿Èô´æÔÚ£¬¸ø³öÒ»ÌõÕâÑùµÄÇúÏߣ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ¡£

 

 

 

 

 

 

 

 

 

 

 

 

¡¾´ð°¸¡¿

 ½â£º£¨I£©

µ±£¬º¯ÊýÔÚÄÚÊÇÔöº¯Êý£¬º¯ÊýûÓм«Öµ¡£¡­¡­3·Ö

µ±a<0ʱ£¬ÁµÃ¡£

µ±x±ä»¯Ê±£¬Óë±ä»¯Çé¿öÈçÏÂ±í£º

x

f`(x)

+

0

-

f(x)

µ¥µ÷µÝÔö

¼«´óÖµ

µ¥µ÷µÝ¼õ

 

µ±Ê±£¬f(x)È¡µÃ×î´óÖµf()=-1+ln()¡£×ÛÉÏ£¬µ±Ê±£¬f(x)ûÓм«Öµ£»

µ±a<0ʱ£¬f(x)µÄ¼«´óֵΪ-1+ln()£¬Ã»Óм«Ð¡Öµ¡£¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­5·Ö

£¨II£©£¨i£©ÉèP1(x1,f(x1)),P2(x2,f(x2))ÊÇÇúÏßy=f(x)ÉϵÄÈÎÒâÁ½µã£¬ÒªÖ¤Ã÷ÏÒP1P2ÓаéËæÇÐÏߣ¬Ö»ÐèÖ¤Ã÷´æÔÚµãQ(x0,f(x0))£¬x1<x0<x2£¬Ê¹µÃ£¬

ÇÒµãQ²»ÔÚP1P2ÉÏ¡£¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­7·Ö

£¬¼´Ö¤´æÔÚ£¬Ê¹µÃ£¬¼´³ÉÁ¢£¬ÇÒµãQ²»ÔÚP1P2ÉÏ¡£

ÒÔÏÂÖ¤Ã÷·½³ÌÔÚ£¨x1,x2£©ÄÚÓн⡣

¼ÇF(x)=£¬ÔòF(x)=£¬Áîg(t) = lnt - t + 1£¬t>1¡££¬g(t)ÔÚÄÚÊǼõº¯Êý£¬g(t) <g(1)=0¡£È¡£¬Ôò £¬¼´F(x1)<0¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­9·Ö

ͬÀí¿ÉÖ¤F(x2)>0, F(x1)F(x2)<0¡£º¯ÊýF(x)=ÔÚ£¨x1,x2£©ÄÚÓÐÁãµã¡£

¼´·½³Ì=0ÔÚ£¨x1,x2£©ÄÚÓнâx=x0¡£¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­10·Ö

ÓÖ¶ÔÓÚº¯Êýg(t)= lnt - t + 1£¬È¡t=£¬Ôò£¬

¿ÉÖª£¬¼´µãQÔÚP1P2ÉÏ¡£F(x)ÊÇÔöº¯Êý£¬F(x)µÄÁãµãÊÇΨһµÄ£¬

¼´·½³Ì=0ÔÚ£¨x1,x2£©ÄÚÓÐΨһ½â¡£

×ÛÉÏ£¬ÇúÏßy=f(x)ÉÏÈÎÒâÒ»ÌõÏÒ¾ùÓаéËæÇÐÏߣ¬²¢ÇÒ°éËæÇÐÏßÊÇΨһµÄ¡£¡­¡­¡­¡­¡­11·Ö

£¨ii£©È¡ÇúÏßC£ºy=h(x)=x2£¬ÔòÇúÏßy=h(x)µÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏß¡£

Ö¤Ã÷ÈçÏ£º

ÉèR£¨x3,y3£©,S(x4,y4)ÊÇÇúÏßCÉÏÈÎÒâÁ½µã£¨x3y4£©£¬

Ôò

ÓÖ

¼´ÇúÏßC£ºy=x2µÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏß¡£¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­14·Ö

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø