ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êý¡£
£¨I£©Çóº¯ÊýµÄ¼«Öµ£»
£¨II£©¶ÔÓÚÇúÏßÉϵIJ»Í¬Á½µãP1£¨x1,y1£©£¬P2£¨x2,y2£©£¬Èç¹û´æÔÚÇúÏßÉϵĵãQ£¨x0,y0£©£¬ ÇÒx1<x0<x2£¬Ê¹µÃÇúÏßÔÚµãQ´¦µÄÇÐÏß//P1P2,£¬Ôò³ÆΪÏÒP1P2,µÄ°éËæÇÐÏß¡£
ÌرðµØ£¬µ±x0 = x1 + (1-)x2 (0<<1)ʱ£¬ÓÖ³ÆΪÏÒP1P2,µÄ-°éËæÇÐÏß¡£
£¨i£©ÇóÖ¤£ºÇúÏßy=f(x)µÄÈÎÒâÒ»ÌõÏÒ¾ùÓаéËæÇÐÏߣ¬²¢ÇÒ°éËæÇÐÏßÊÇΨһµÄ£»
£¨ii£©ÊÇ·ñ´æÔÚÇúÏßC£¬Ê¹µÃÇúÏßCµÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏߣ¿Èô´æÔÚ£¬¸ø³öÒ»ÌõÕâÑùµÄÇúÏߣ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ¡£
½â£º£¨I£©
µ±£¬º¯ÊýÔÚÄÚÊÇÔöº¯Êý£¬º¯ÊýûÓм«Öµ¡£¡¡3·Ö
µ±a<0ʱ£¬ÁµÃ¡£
µ±x±ä»¯Ê±£¬Óë±ä»¯Çé¿öÈçÏÂ±í£º
x |
|
|
|
f`(x) |
+ |
0 |
- |
f(x) |
µ¥µ÷µÝÔö |
¼«´óÖµ |
µ¥µ÷µÝ¼õ |
µ±Ê±£¬f(x)È¡µÃ×î´óÖµf()=-1+ln()¡£×ÛÉÏ£¬µ±Ê±£¬f(x)ûÓм«Öµ£»
µ±a<0ʱ£¬f(x)µÄ¼«´óֵΪ-1+ln()£¬Ã»Óм«Ð¡Öµ¡£¡¡¡¡¡¡¡¡¡¡¡¡5·Ö
£¨II£©£¨i£©ÉèP1(x1,f(x1)),P2(x2,f(x2))ÊÇÇúÏßy=f(x)ÉϵÄÈÎÒâÁ½µã£¬ÒªÖ¤Ã÷ÏÒP1P2ÓаéËæÇÐÏߣ¬Ö»ÐèÖ¤Ã÷´æÔÚµãQ(x0,f(x0))£¬x1<x0<x2£¬Ê¹µÃ£¬
ÇÒµãQ²»ÔÚP1P2ÉÏ¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7·Ö
£¬¼´Ö¤´æÔÚ£¬Ê¹µÃ£¬¼´³ÉÁ¢£¬ÇÒµãQ²»ÔÚP1P2ÉÏ¡£
ÒÔÏÂÖ¤Ã÷·½³ÌÔÚ£¨x1,x2£©ÄÚÓн⡣
¼ÇF(x)=£¬ÔòF(x)=£¬Áîg(t) = lnt - t + 1£¬t>1¡££¬g(t)ÔÚÄÚÊǼõº¯Êý£¬g(t) <g(1)=0¡£È¡£¬Ôò £¬¼´F(x1)<0¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9·Ö
ͬÀí¿ÉÖ¤F(x2)>0, F(x1)F(x2)<0¡£º¯ÊýF(x)=ÔÚ£¨x1,x2£©ÄÚÓÐÁãµã¡£
¼´·½³Ì=0ÔÚ£¨x1,x2£©ÄÚÓнâx=x0¡£¡¡¡¡¡¡¡¡¡¡10·Ö
ÓÖ¶ÔÓÚº¯Êýg(t)= lnt - t + 1£¬È¡t=£¬Ôò£¬
¿ÉÖª£¬¼´µãQÔÚP1P2ÉÏ¡£F(x)ÊÇÔöº¯Êý£¬F(x)µÄÁãµãÊÇΨһµÄ£¬
¼´·½³Ì=0ÔÚ£¨x1,x2£©ÄÚÓÐΨһ½â¡£
×ÛÉÏ£¬ÇúÏßy=f(x)ÉÏÈÎÒâÒ»ÌõÏÒ¾ùÓаéËæÇÐÏߣ¬²¢ÇÒ°éËæÇÐÏßÊÇΨһµÄ¡£¡¡¡¡¡11·Ö
£¨ii£©È¡ÇúÏßC£ºy=h(x)=x2£¬ÔòÇúÏßy=h(x)µÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏß¡£
Ö¤Ã÷ÈçÏ£º
ÉèR£¨x3,y3£©,S(x4,y4)ÊÇÇúÏßCÉÏÈÎÒâÁ½µã£¨x3y4£©£¬
Ôò
ÓÖ
¼´ÇúÏßC£ºy=x2µÄÈÎÒâÒ»ÌõÏÒ¾ùÓÐ-°éËæÇÐÏß¡£¡¡¡¡¡¡¡¡¡¡¡¡¡¡14·Ö