题目内容
15.设正数列{an}满足a1=a2=1,$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),求通项公式an.分析 由已知可得$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$-1=2$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,构造等比数列{$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1}并求出其通项公式,进而利用累乘法,可得数列{an}的通项公式.
解答 解:∵$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),
∴$\sqrt{\frac{{a}_{n}•{a}_{n-2}}{{a}_{n-1}•{a}_{n-2}}}$-$\sqrt{\frac{{a}_{n-1}•{a}_{n-2}}{{a}_{n-1}•{a}_{n-2}}}$=2$\sqrt{\frac{{a}_{n-1}•{a}_{n-1}}{{a}_{n-1}•{a}_{n-2}}}$,
即$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$-1=2$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,
即$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$+1=2($\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$+1),
又∵a1=a2=1,
故$\sqrt{\frac{{a}_{2}}{{a}_{1}}}$+1=2,
即数列{$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1}是以2为首项,以2为公比的等比数列,
故$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1=2n,
故$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$=2n-1,
∴$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$=2n-1-1,
$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$=2n-2-1,
…
$\sqrt{\frac{{a}_{3}}{{a}_{2}}}$=22-1,
$\sqrt{\frac{{a}_{2}}{{a}_{1}}}$=2-1,
累乘得:$\sqrt{{a}_{n}}$=(2n-1-1)•(2n-2-1)•…•(22-1)•(2-1).
故an=[(2n-1-1)•(2n-2-1)•…•(22-1)•(2-1)]2.
点评 本题考查的知识点是数列的递推公式,等比数列,数列通项公式的求法,难度较大.
A. | {1} | B. | [0,1] | C. | (0,1] | D. | [0,1) |
A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
A. | $\frac{4}{3}$,$\sqrt{2}$,$\frac{1}{5}$,$\frac{3}{10}$ | B. | $\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$ | C. | $\frac{3}{10}$,$\frac{1}{5}$,$\sqrt{2}$,$\frac{4}{3}$ | D. | $\frac{1}{5}$,$\frac{3}{10}$,$\frac{4}{3}$,$\sqrt{2}$ |