题目内容
【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市拟定出台“房产限购的年龄政策”.为了解人们对“房产限购年龄政策”的态度,在2060岁的人群中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如图所示:
年龄 | |||||
支持的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异?
44岁以下 | 44岁及44岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会,现从这8人中随机抽2人.记抽到44岁以上的人数为,求随机变量的分布列及数学期望.
参考公式:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)填表见解析;能;(2)分布列见解析;期望为.
【解析】
(1)由统计数据填写列联表,计算观测值,对照临界值得出结论;(2)根据题意知X的可能取值,计算对应的概率值,写出随机变量X的分布列,计算数学期望值.
(1)由统计数据填列联表如下:
44岁以下 | 44岁及44岁以上 | 总计 | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
总计 | 50 | 50 | 100 |
计算观测值,
所以在犯错误的概率不超过5%的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异;
(2)由题意可知抽取的这8人中,44岁以下的有6人,44岁以上的有2人,
根据题意,的可能取值是0,1,2,
,
,
,
可得随机变量X的分布列为:
0 | 1 | 2 | |
故数学期望为.
【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组 | ||||||
频 数 | 3 | 9 | 17 | 11 | 8 | 2 |
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(3)在这50个红包组成的样本中,将频率视为概率.
①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,,求事件“”的概率.
【题目】对数是简化繁杂运算的产物.16世纪时,为了简化数值计算,数学家希望将乘除法归结为简单的加减法.当时已经有数学家发现这在某些情况下是可以实现的.
比如,利用以下2的次幂的对应表可以方便地算出的值.
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
首先,在第二行找到16与256;然后找出它们在第一行对应的数,即4与8,并求它们的和,即12;最后在第一行中找到12,读出其对应的第二行中的数4096,这就是的值.
用类似的方法可以算出的值,首先,在第二行找到4096与128;然后找出它们在第一行对应的数,即12与7,并求它们的______;最后在第一行中找到______,读出其对应的第二行中的数______,这就是值.