题目内容
若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.(Ⅰ)已知函数的图象关于点(0,1)对称,求实数m的值;
(Ⅱ)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.
【答案】分析:(Ⅰ)利用函数的图象关于点(0,1)对称,可得f(x)+f(-x)=2,代入解析式,即可求得m的值;
(Ⅱ)利用函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,可得g(x)+g(-x)=2,根据x∈(0,+∞)时的解析式,即可求得结论;
(Ⅲ)对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,等价于g(x)max<f(t)min,由此可求实数a的取值范围.
解答:解:(Ⅰ)由题设,∵函数的图象关于点(0,1)对称,
∴f(x)+f(-x)=2,
∴=2
∴m=1…(4分)
(Ⅱ)∵函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,
∴g(x)+g(-x)=2,
∵当x∈(0,+∞)时,g(x)=x2+ax+1,
∴当x<0时,g(x)=2-g(-x)=-x2+ax+1…(8分)
(Ⅲ)由(Ⅰ)得,其最小值为f(1)=3
,…(10分)
①当,即a<0时,,∴…(12分)
②当,即a≥0时,g(x)max<1<3,∴a∈[0,+∞)…(13分)
由①、②得…(14分)
点评:本题考查函数的对称性,考查函数的解析式,考查恒成立问题,正确求出函数的最值是关键.
(Ⅱ)利用函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,可得g(x)+g(-x)=2,根据x∈(0,+∞)时的解析式,即可求得结论;
(Ⅲ)对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,等价于g(x)max<f(t)min,由此可求实数a的取值范围.
解答:解:(Ⅰ)由题设,∵函数的图象关于点(0,1)对称,
∴f(x)+f(-x)=2,
∴=2
∴m=1…(4分)
(Ⅱ)∵函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,
∴g(x)+g(-x)=2,
∵当x∈(0,+∞)时,g(x)=x2+ax+1,
∴当x<0时,g(x)=2-g(-x)=-x2+ax+1…(8分)
(Ⅲ)由(Ⅰ)得,其最小值为f(1)=3
,…(10分)
①当,即a<0时,,∴…(12分)
②当,即a≥0时,g(x)max<1<3,∴a∈[0,+∞)…(13分)
由①、②得…(14分)
点评:本题考查函数的对称性,考查函数的解析式,考查恒成立问题,正确求出函数的最值是关键.
练习册系列答案
相关题目