题目内容

已知函数,为正整数.

(Ⅰ)求的值;

(Ⅱ)数列的通项公式为(),求数列的前项和;

(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.

 

【答案】

(Ⅰ)  (Ⅱ)  

(Ⅲ) 650

【解析】

试题分析:(Ⅰ)=1;                      2分

===1; 4分

(Ⅱ)由(Ⅰ)得 ,

 

,    ①

  ②

由①+②, 得

,          10分

(Ⅲ) 解:∵,∴对任意的

.

.

∴数列是单调递增数列.

关于n递增. 当, 且时, .

 

 

.而为正整数,

的最大值为650                                  16分

考点:数列求和

点评:本题主要考查的是数列求和,其中用到了倒序相加,裂项相消等常用到的求和方法,倒序相加适用于第n项与倒数第n项之和为定值的数列,列项相消一般适用于通项公式为

的形式的数列

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网