题目内容
7.“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的( )A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 由圆的方程找出圆心坐标和半径r,根据直线与圆相切,得到圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于m的方程,求出方程的解可得到m的值,即可得出结论.
解答 解:由圆x2+y2=2,得到圆心(0,0),半径r=$\sqrt{2}$,
∵直线x-y+m=0与圆x2+y2=2相切,
∴圆心到直线的距离d=r,即$\frac{|m|}{\sqrt{2}}$=$\sqrt{2}$,
整理得:|m|=2,即m=±2,
∴“m=2”是“直线x-y+m=0与圆x2+y2=2相切”的充分不必要条件,
故选:A.
点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,以及点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关题目
17.已知复数z满足(1+2i)z=4+3i,则z的共轭复数是( )
A. | 2-i | B. | 2+i | C. | 1+2i | D. | 1-2i |
15.已知命题p:?x∈R,2x>x2;命题q:?x(-2,+∞),使得(x+1)•ex≤1,则下列命题中为真命题的是( )
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | (¬p)∧(¬q) |
2.已知a=-${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则二项式(x2+$\frac{a}{x}$)6的展开式中x3的系数为( )
A. | 20 | B. | -20 | C. | 160 | D. | -160 |
12.如图,网格上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该组合体的体积为( )
A. | 12π+4+4$\sqrt{3}$ | B. | 12π+4$\sqrt{3}$ | C. | 4π+8 | D. | 4π+$\frac{8}{3}$ |
17.微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有$\frac{1}{3}$的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中$\frac{3}{4}$是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有$\frac{2}{3}$是青年人.
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容 量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
(Ⅱ)由列表中的数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容 量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
青年人 | 中年人 | 合计 | |
经常使用微信 | |||
不经常使用微信 | |||
合计 |
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |